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The Green-Kubo relation for two models of granular gases is discussed. In the Maxwell model in any
dimension, the effective temperature obtained from the Green-Kubo relation is shown to be frequency inde-
pendent and equal to the average kinetic energy, known as the granular temperature. In the second model
analyzed, a mean-field granular gas, the collision rate of a particle is taken to be proportional to its velocity.
The Green-Kubo relation in the high-frequency limit is calculated for this model, and the effective temperature
in this limit is shown to be equal to the granular temperature. This result, taken together with previous results
showing a difference between the effective temperature at zero frequency �the Einstein relation� and the
granular temperature, shows that the Green-Kubo relation for granular gases is violated.
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I. INTRODUCTION

Fluctuation-dissipation �FD� relations in nonequilibrium
systems have been the subject of considerable attention re-
cently �1–8�. In this context, granular matter serves as a per-
fect example of a nonequilibrium system. Such systems con-
sist of macroscopic grains undergoing inelastic collisions. In
a cooling state, no energy is injected into the system, and the
total kinetic energy decreases steadily, approaching a trivial
steady state where all grains are at rest. If energy is con-
stantly supplied to the system a nonequilibrium steady state
�NESS� is reached. This paper focuses on the frequency-
dependent FD relations in this NESS.

If the density of grains is low, the system is known as a
granular gas �9,10�. In this case, spatial correlations are
small, and mean-field models, in which particles collide
without regard to their positions, may provide good approxi-
mations of the system at hand. In such models, interactions
are governed by a stochastic collision rule, with some inter-
action rate. Two such models are studied in this paper, dif-
fering in their collision rules. The simpler of the two is the
inelastic Maxwell model �11,12�, in which the collision rate
is taken to be constant for each pair of particles in the sys-
tem. In the second, more realistic model, which we refer to
as the mean-field granular gas �MFGG�, the collision rate of
each pair of particles is proportional to the particles’ relative
velocity.

The FD theorem �13,14� connects the linear response of
an equilibrium system to its correlations. Stated in the fre-
quency ��� domain, it relates the response function to a weak
harmonic force to the Fourier-Laplace transform of the auto-
correlation function of the observable conjugate to that force.
The theorem states that, remarkably, the two functions have
exactly the same frequency dependence, and, moreover, that
their ratio is equal to the temperature of the system. Since the
full frequency-dependent functions are not always easy to
compute, their �→0 limit is often calculated; the connection
between fluctuation and response in this limit is known as
the Einstein relation.

In a NESS, the response to a weak perturbation from the
steady state and the corresponding autocorrelation may be

similarly defined. Since granular gases are out of equilib-
rium, however, the FD relation is not expected to generally
hold, and the two functions may have different frequency
dependencies. If we nevertheless define a FD temperature
TFD as the ratio of the correlation and response functions
�1,15�, we would expect this quantity to depend on fre-
quency.

This having been said, there is evidence that the FD rela-
tion may nonetheless closely hold for driven granular gases.
Molecular dynamics simulations of two-dimensional �2D�
granular gases �16� indicate that TFD is approximately fre-
quency independent, and, moreover, is close to the average
kinetic energy per particle, known as the granular tempera-
ture TG. Einstein relations were calculated for the MFGG
model, yielding a value for TFD different from TG �17�. Nu-
merically, however, this deviation was small, and consistent
with direct Monte Carlo simulations �18� that observed no
violation of the FD relation �dependence of TFD on �� to
within their accuracy. Experiments on air fluidized particles
have shown that at low densities the effective temperature
measured from the Einstein relations is close to the granular
temperature �19�. For the 1D Maxwell model with a Gauss-
ian thermostat, the Einstein relation was calculated �20� and
yielded TFD=TG. Additional transport coefficients, calculated
in �21�, verify the Einstein relation in the Maxwell model.
Subsequently, we showed that the full frequency-dependent
FD relation holds exactly for the Maxwell model, driven by
either a Gaussian or a stochastic thermostat �22�. This result
was recently shown to also hold in 2D with a Gaussian ther-
mostat �23�. Fluctuation-dissipation relations in denser sys-
tems, in which correlations play a role, are discussed e.g., in
�23–27�. Time-dependent FD relations in other systems are
studied in �5,6,8,28�.

In �22� we also discussed a simple model of a granular
gas �29�, for which the FD relations were calculated analyti-
cally. It was shown that, in measurements where correlations
between different degrees of freedom appear, the FD relation
is violated. In �23� the role of correlations was studied in
simulations of granular fluids, and was shown to affect the
violation of the FD relation. However, FD violation has not
yet been observed in simulations of dilute granular gases,
due to their limited accuracy. In this paper we provide theo-
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retical reasoning for why FD relations should be only
slightly violated even in the dilute limit.

We first show that the frequency-dependent FD relation
holds in the Maxwell model in any dimension and with both
customarily used thermostats. We then show that the
frequency-dependent FD relation is violated in the MFGG,
where collision rates depend on velocity. Quantitatively, the
violation is expected to be small, in accordance with previ-
ous simulation results.

II. FLUCTUATION-DISSIPATION RELATION

The Green-Kubo �GK� formulation �14� employs the
frequency-dependent autocorrelation function, defined as the
Fourier-Laplace transform of the velocity autocorrelation
function,

D��� �
1

d
�

0

�

�v�0� · v�t��e−i�tdt , �1�

where d is the system dimension. Vectorial quantities are
written in boldface font �e.g., v for the velocity�. Note that
D��� reduces to the diffusion coefficient in the zero-
frequency limit.

The frequency-dependent mobility is calculated by apply-
ing a weak periodic force ��t�=�0ei�t to a single particle i
and measuring the amplitude A��� of its resulting velocity,
averaged over the steady state: �vi�=A���ei�t. Then �0 and A
are directed along the same direction, and the mobility ����
is defined so that

�0���� = A��� . �2�

Equivalently, if some general time-dependent force ��t� is
applied to particle i, and �vi�t�� is its resulting average veloc-
ity, ���� may be defined so that

�̃������� = �ṽi���� , �3�

where �̃��� and �ṽi���� are the Fourier transforms of ��t� and
�vi�t��, respectively. Note that both D��� and ���� are com-
plex.

In thermodynamic equilibrium the FD theorem, or Kubo
formula, guaranties that D���=T����, where the tempera-
ture is measured in units of energy, and Boltzmann’s constant
is set to 1. The Einstein relation is obtained by taking the
�→0 limit, thereby connecting the mobility with respect to
a constant force and the long-time diffusion coefficient.

For a NESS one may use the fluctuation D��� and the
response ���� to define an effective FD temperature
�1,15,26,27,29–34�

TFD��� �
D���
����

. �4�

TFD��� scales fluctuations in the system and in general de-
pends on the measurement frequency �. In this context, the
FD theorem states that in equilibrium TFD��� is independent
of � and is equal to the system’s temperature.

III. INELASTIC MAXWELL MODEL

In this section we show that in the Maxwell model, where
the collision rate � is velocity independent, the frequency-
dependent GK relations hold exactly with TFD=TG, where
TG, known as the granular temperature, is defined as
TG��v2� /d �taking particles of unit mass�. In �20� the Ein-
stein relations for the 1D Maxwell model with a Gaussian
thermostat were shown to give TFD�0�=TG �the thermostats
are defined below�. In �22� we showed that, for both Gauss-
ian and stochastic thermostats, in the 1D Maxwell model
TFD���=TG, independent of frequency. For clarity of presen-
tation, before turning to higher dimensions and to the more
realistic MFGG model, we first present the derivation of this
result in more detail.

In the 1D inelastic Maxwell model, each particle is de-
scribed by its velocity vi. Particles collide at a constant col-
lision rate �, and the colliding particles are chosen at ran-
dom. In a collision between particles i and j, the velocity of
each particle in the center of mass frame is multiplied by −�,
where � is the restitution coefficient. The particles are
coupled to a thermostat, which can be one of two types. A
stochastic thermostat �35,36� exerts a fluctuating force �i�t�
and a velocity-dependent damping force −�vi on each par-
ticle �with �	0�. During a finite time 
t	0, short com-
pared to �−1 and to �−1, the effect of the fluctuating force on
a particle’s velocity is proportional to 	
t �see, e.g., �35��. In
a Gaussian thermostat �37�, instead of applying a random
force �i�t�, � is assigned a negative value such that the term
−�vi acts as a velocity-dependent driving force, which res-
cales the velocities of all particles in every time interval. The
NESS achieved with a Gaussian thermostat is exactly the
freely cooling state, rescaled at every time step �38�.

For both types of thermostats, the velocity of particle i
evolves according to

vi�t + 
t� = 
 value probability

�1 − �
t�vi + �i
	
t 1 − �
t

1−�
2 vi + 1+�

2 v j �
t
� �5�

where vi, v j, and �i in the right-hand side are taken at time t.
This represents the stochastic evolution of the system, where,
at probability � per unit time, particle i collides with a ran-
domly chosen particle j and their velocities are updated ac-
cordingly �second line in Eq. �5��. Keeping terms up to linear
order in the short time interval 
t, the velocity of particle i is
updated due to the interaction with the thermostat only for
time intervals during which it did not collide with another
particle in the system �first line in Eq. �5��. For a stochastic
thermostat, �i�t� is an uncorrelated random acceleration with
���=0, and ��2�=2�TB, where TB is a parameter, interpreted
as the temperature of a bath to which the system is con-
nected. For a steady state of elastic particles ��=1�,
TG��v2�=TB, as expected in equilibrium. For a Gaussian
thermostat, �i�t�=0 and �= ��2−1�� /4, which maintains a
constant TG.

In order to obtain the velocity autocorrelation function,
we multiply Eq. �5� by vi�0� and average over stochasticity
and initial conditions, to get
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�vi�0�vi�t + 
t�� = ��1 − �
t��vi�0�vi�t��

+ �vi�0��i�t��	
t��1 − �
t�

+ �1 − �

2
�vi�0�vi�t��

+
1 + �

2
�vi�0�v j�t���
t . �6�

Noting that �vi�0��i�t��=0, �vi�0�v j�t��=0, neglecting terms
of order �
t�2, and rearranging, we take the limit 
t→0 to
obtain

d�v�0�v�t��
dt

= − �1D�v�0�v�t�� , �7�

where �1D��+ 1
2 �1+��� is the “effective drag” experienced

by a particle due to the drag of the thermostat and the colli-
sions with other particles. This differential equation has the
solution

�v�0�v�t�� = �v2�e−�1Dt. �8�

Using Eq. �8� in the definition of D���, Eq. �1�, we find

D��� =
�v2�

�1D + i�
. �9�

To calculate the mobility, a periodic acceleration
��t�=�0ei�t is applied to a single particle i. Due to the mean-
field assumption, and in the thermodynamic limit of a very
large system, the probability distribution of v j�t� �i� j� is
unaffected by the force ��t� acting on particle i. From Eq.
�5�, we similarly have

d�vi�t��
dt

= − �1D�vi�t�� + �0ei�t. �10�

This has the steady solution �vi�t��=�0ei�t / ��+ i��, so from
Eq. �2� we see that

���� =
1

�1D + i�
. �11�

Using Eqs. �4�, �9�, and �11�, we find that the equilibrium GK
formula holds with TFD���=TG, even though the system is
far from equilibrium.

We now turn to the derivation of the GK relations in the
Maxwell model in higher dimensions. We will discuss the
three-dimensional case in what follows, but the derivation
applies to any dimension, and generalizes previous 1D
�20,22� and 2D �23� results.

The equation of motion for the velocity vi in the labora-
tory frame is

vi�t + 
t� = 
 value probability

�1 − �
t�vi + �i
	
t 1 − �
t

vi − 1+�
2 �n̂ · 
vij�n̂ �
t

� �12�

where the quantities in the right-hand side are taken at time t.
As in the 1D derivation, � denotes the drag coefficient, the
vector �i is the random driving acceleration applied to par-
ticle i, and � is the restitution coefficient. n̂��ri−r j� /2R is

the unit vector between the centers of the colliding particles.
R is the particle radius. 
vij �vi−v j is the precollisional rela-
tive velocity.

As in the 1D case, the derivation of the GK relation con-
sists of separate calculations of the mobility and autocorre-
lation; the GK relation is then obtained by taking the ratio of
the two results.

A. Mobility

To calculate the mobility, we add an oscillatory driving to
Eq. �12�:

vi�t + 
t� = �0ei�t
t + 
 value probability

�1 − �
t�vi + �i
	
t 1 − �
t

vi − 1+�
2 �n̂ · 
vij�n̂ �
t .

�
�13�

Averaging over the stochasticity and the initial distribution,
we find

�vi�t + 
t�� = �0ei�t
t + �1 − �
t��1 − �
t��vi�t��

+ �
t�vi�t�� − �
t
1 + �

2
��n̂ · 
vij�n̂� ,

�14�

where the term involving �i vanishes, since ��i�=0.
Consider the collision of two particles i and j. Figure 1

depicts this collision, in the reference frame moving with the
precollision velocity of particle i. b is the dimensionless im-
pact parameter, 0b1, distributed with probability
�d−1�bd−2 in d dimensions, for d	1 �for d=1, b=0 identi-
cally�. Due to the assumption of molecular chaos, b is inde-
pendent of the precollisional velocities vi�0�, vi�t�, v j�t�, and

vij�t�. Let us decompose n̂=n� +n�, such that n� is aligned
with the collision direction 
vij�t�, and n� is perpendicular
to that direction; see Fig. 1. Note that n� ,n� are not of unit

length. Now define k̂� , k̂� to be the unit vectors in the n� ,n�

directions, respectively. Then n�=bk̂� and n� =	1−b2k̂�.
Substituting these definitions and neglecting terms of order
�
t�2, the preceding equation reads

n̂

i

j

2bR

vi − vj n�

n⊥

FIG. 1. Collision of two particles in the rest frame of particle i
before the collision.
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�vi�t + 
t�� = �0ei�t
t + �1 − �
t��vi�t��

− �
t
1 + �

2
��1 − b2��k̂� · 
vij�k̂��

− �
t
1 + �

2
��n� · 
vij�n�� . �15�

Since k̂� and 
vij are coaligned,

�k̂� · 
vij�k̂� = 
vij , �16�

and because b is independent of 
vij�t�,

��1 − b2��k̂� · 
vij�k̂�� = ��1 − b2�
vij� = �1 − b2��
vij� .

�17�

The term ��n� ·
vij�n�� in Eq. �15� vanishes �without assum-
ing it can be decomposed into uncorrelated terms�, since it is
antisymmetric in n�: for every n�, the contribution of
�n� ·
vij�n� to the average, with n�→−n�, is equally prob-
able, and with opposite sign. Hence, using Eq. �17�, Eq. �15�
becomes

�vi�t + 
t�� = �0ei�tdt + �1 − �
t��vi�t��

− �
t
1 + �

2
�1 − b2��
vij�

= �0ei�t
t + �1 − �
t��vi�t��

− �
t
1 + �

2
�1 − b2��vi�t�� , �18�

since �v j�t��=0. Gathering the terms, we obtain the differen-
tial equation

d�vi�t��
dt

= − ��vi�t�� + �0ei�t, �19�

with ���+ 1+�
2 �1−b2��. Hence

���� =
1

� + i�
, �20�

as in the 1D case, but with a dimension-dependent effective
drag coefficient �.

B. Autocorrelation

Using Eq. �12�, we compute the change in �vi�0� ·vi�t��
during a short interval 
t. We multiply both sides of Eq. �12�
by vi�0�, and take the ensemble average. Noting that
��i�t� ·vi�0��=0, and n� ·
vij�t�=0, we find

�vi�0� · vi�t + 
t�� = �1 − �
t��vi�0� · vi�t�� − �
t
1 + �

2
��n� · 
vij���n� + n�� · vi�0��� . �21�

With k̂� as defined above, this becomes

�vi�0� · vi�t + 
t�� = �1 − �
t��vi�0� · vi�t�� − �
t
1 + �

2
��1 − b2���k̂� · 
vij�k̂�� · vi�0�� − �
t

1 + �

2
��n� · 
vij��n� · vi�0��� .

�22�

As in the mobility calculation, the term ��n� ·
vij��n� ·vi�0���
vanishes, because it is antisymmetric under the transforma-

tion n�→−n�. Moreover, �k̂� ·
vij�k̂� =
vij. Rearranging,
we find

d�vi�0� · vi�t��
dt

= − ��vi�t� · vi�0�� �23�

with � as defined following Eq. �19�. Hence, as in the 1D
case,

D��� =
�v2�

� + i�
. �24�

Equations �24� and �20� are generalizations of Eqs. �9� and
�11�, respectively; Indeed, in 1D, b=0, and the result
�1D=�+ 1

2��1+�� is reproduced. In 2D and 3D,
�2D��+ 2

3��1+�� and �3D��+ 7
8��1+��. As in the 1D

case, Eqs. �20� and �24� show that the mobility and autocor-

relation functions have the same frequency dependence;
hence the frequency-dependent GK relation holds for the
Maxwell model, with TFD���=TG, in any dimension, and for
both customarily studied thermostats.

IV. MEAN-FIELD GRANULAR GAS

In this section the GK relation is discussed for the MFGG
model, which has a velocity-dependent collision rate. The
zero-frequency GK relation �Einstein relation� for the 3D
version of this model has been studied previously. Using
kinetic theory approximations, the value of TFD�0� was
shown to be close but not exactly equal to TG. For a tracer
particle of the same mass and size as the rest of the particles,
TFD�0� deviates from TG by up to 1% for the stochastic ther-
mostat and by up to 6% for the Gaussian thermostat �17�.

We now show that in the infinite-frequency limit the FD
temperature is exactly equal to the granular temperature:
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TFD���
TG

→
�→�

1. �25�

In fact, what we show is that, for frequencies much higher
than the highest characteristic frequency in the system, this
relation holds. Equation �25� together with the results of �17�
show that the FD relation is violated. They do, however,
indicate that the violation, measured as the variation in
TFD��� with frequency, is small.

Consider first the mobility. The mobility in the Maxwell
model was calculated using Eq. �19�. This equation must be
modified for the MFGG model. This is because the effective
drag experienced by a particle depends on its instantaneous
velocity: �=��v�. Note that, due to the mean-field �molecu-
lar chaos� assumption, the collisions of a particle do not de-
pend on the history of the particle, and therefore � depends
only on the current particle velocity. The analog of Eq. �19�
can therefore be written as

d�vi�t��
dt

= − ���vi�vi�t�� + ��t� , �26�

where as before the function ��t� is the force applied to the
tracer particle. We denote the velocity distribution of the
tracer particle at time t by p�vi , t�. Writing the averages ex-
plicitly, Eq. �26� becomes

� �p�vi,t�
�t

vidvi = −� p�vi,t���vi�vidvi + ��t� , �27�

and its Fourier transform reads

i�� p̃�vi,���1 +
��vi�

i�
vidvi = �̃��� , �28�

where p̃�vi ,�� , �̃��� are the Fourier transforms of
p�vi , t� , ��t�, respectively. Rearranging, and noting that

�ṽi���� and �̃��� are vectors in the same direction, so that
their quotient is well defined, we find that

���� �
�ṽi����

�̃���
=
� p̃�vi,��vidvi

�̃���
=

1

i�
+ O� 1

�2 ,

�29�

where O� 1
�2 � denotes a function of order �1 /��2, for

1 /�→0.
To calculate the fluctuation D���, we denote

C�t���v�0� ·v�t��, and the Fourier-Laplace transform of a
function by F�¯�. Then,

F�C�t�� = �
0

�

C�t�e−i�tdt

=
− 1

i� ��C�t�e−i�t�t=0
� − �

0

� dC�t�
dt

e−i�tdt
=

1

i��C�0� + F�dC�t�
dt � . �30�

This recursion relation �39� is satisfied by the infinite series

D��� =
1

d
F�C�t�� =

1

d
�
n=0

�
1

�i��n+1�dnC�t�
dtn �

t=0+
. �31�

If all the derivatives of C�t� are well behaved, we have

D��� =
1

d

1

i�
C�0� + O� 1

�2 . �32�

Using Eqs. �29� and �32�, the resulting FD temperature is

TFD��� =
D���
����

→
�→�

1

d
C�0� =

1

d
�v2� = TG, �33�

which is what we wanted to show; cf. Eq. �25�.
This result can be interpreted as follows. The system pos-

sesses two time scales, the mean time between collisions and
the thermostat time scale �−1. For frequencies higher than the
inverse of these two time scales, D��� and ���� have the
same frequency dependence, and the FD relation holds, with
D��� /TG�������i��−1.

V. DISCUSSION

The results for the two models can be summarized as
follows; see Fig. 2. In the Maxwell model the FD relation
holds, with a single FD temperature for all frequencies. In
the more physically realistic MFGG model, the FD relation
is violated: whereas �17� gives TFD�0��TG, we have found
lim�→� TFD���=TG, demonstrating that TFD is not indepen-
dent of �. The difference in TFD between the limits of high
and low frequency is smaller than several percent. We would
thus expect that the variation in TFD��� is small for all fre-
quencies. This variation is expected to be the largest for
small � and could perhaps be detected in simulations. Mo-

ω

TFD

TG

Maxwell model
mean-field granular gas
schematic interpolation

FIG. 2. �Color online� FD temperature in the Maxwell model
and in the mean-field granular gas model. In the former, the tem-
perature obtained from the Green-Kubo relations is frequency inde-
pendent and equal to the granular temperature. In the latter, the
temperature obtained depends on the measurement frequency. The
schematic curve interpolates between the high- and low-� limits.
The difference between the two curves is not to scale.

FREQUENCY-DEPENDENT FLUCTUATION-DISSIPATION… PHYSICAL REVIEW E 77, 051301 �2008�

051301-5



lecular dynamics simulations are hard to conduct for very
inelastic particles ���0�, since the grains tend to cluster
�40–42�. In direct simulation Monte Carlo techniques, on the
other hand, the mean-field property is explicitly imposed,
and the variation of TFD with frequency may be easier to
detect. It would furthermore be interesting to explore
whether analytic progress may be achieved in studying the
high-frequency limit for dense systems where correlations
give rise to significant FD violations �23�. Last, we note that
the technique we used to calculate the infinite-frequency
limit for the MFGG model applies to a more general class of

models, such as models in which the restitution coefficient
depends on the particles’ relative velocity �43–45�.
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